Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biomed Sci ; 29(1): 37, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-2139298

ABSTRACT

BACKGROUND: Calls for the coronavirus to be treated as an endemic illness, such as the flu, are increasing. After achieving high coverage of COVID-19 vaccination, therapeutic drugs have become important for future SARS-CoV-2 variant outbreaks. Although many monoclonal antibodies have been approved for emergency use as treatments for SARS-CoV-2 infection, some monoclonal antibodies are not authorized for variant treatment. Broad-spectrum monoclonal antibodies are unmet medical needs. METHODS: We used a DNA prime-protein boost approach to generate high-quality monoclonal antibodies. A standard ELISA was employed for the primary screen, and spike protein-human angiotensin-converting enzyme 2 blocking assays were used for the secondary screen. The top 5 blocking clones were selected for further characterization, including binding ability, neutralization potency, and epitope mapping. The therapeutic effects of the best monoclonal antibody against SARS-CoV-2 infection were evaluated in a hamster infection model. RESULTS: Several monoclonal antibodies were selected that neutralize different SARS-CoV-2 variants of concern (VOCs). These VOCs include Alpha, Beta, Gamma, Delta, Kappa and Lambda variants. The high neutralizing antibody titers against the Beta variant would be important to treat Beta-like variants. Among these monoclonal antibodies, mAb-S5 displays the best potency in terms of binding affinity and neutralizing capacity. Importantly, mAb-S5 protects animals from SARS-CoV-2 challenge, including the Wuhan strain, D614G, Alpha and Delta variants, although mAb-S5 exhibits decreased neutralization potency against the Delta variant. Furthermore, the identified neutralizing epitopes of monoclonal antibodies are all located in the receptor-binding domain (RBD) of the spike protein but in different regions. CONCLUSIONS: Our approach generates high-potency monoclonal antibodies against a broad spectrum of VOCs. Multiple monoclonal antibody combinations may be the best strategy to treat future SARS-CoV-2 variant outbreaks.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 Vaccines , Cricetinae , Humans , Spike Glycoprotein, Coronavirus/genetics
2.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1367852

ABSTRACT

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Subject(s)
Antibodies, Viral/metabolism , COVID-19/immunology , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/pathogenicity , Viral Matrix Proteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , Cell Line , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/immunology , Coronavirus Envelope Proteins/ultrastructure , Cricetinae , Humans , Microscopy, Electron, Transmission , Mutation , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/ultrastructure , Virion/genetics , Virion/immunology , Virion/metabolism , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL